3 September, 2012

In High Energy Physics on October 16, 2012 by physthjc

1) Dark Matter

  • Constraints on Primordial Black Holes as Dark Matter Candidates from Star Formation
    abstract:By considering adiabatic contraction of the dark matter (DM) during the star formation, we estimate the amount of DM trapped in stars at their birth in different astrophysical environments. If the DM consists partly of primordial black holes (PBHs), they will be trapped together with the rest of the DM and will be finally inherited by a star compact remnant — a white dwarf (WD) or a neutron star (NS), which they will destroy in a short time. Observations of WDs and NSs thus impose constraints on the abundance of PBH. We show that the best constraints come from WDs and NSs in globular clusters which exclude the DM consisting entirely of PBH in the mass range $10^{16}{\rm g} – 10^{26}{\rm g}$, the strongest constraint on the fraction $\Omega_{\rm PBH} /\Omega_{DM}\lesssim 10^{-5}$ being in the range of PBH masses $10^{17}{\rm g} – 10^{18}$ g. 

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: